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I napproximability Results for Guarding Polygons
and Terrainst

S. Eidenbenz,?2 C. Stamm,? and P. Widmayer?

Abstract.  Past research on art galery problems has concentrated almost exclusively on bounds on the
numbers of guards needed in the worst case in various settings. On the complexity side, fewer results are
available. For instance, it has long been known that placing a smallest number of guards for a given input
polygon is NP-hard. In this paper we initiate the study of the approximability of several types of art gallery
problems.

Motivated by a practical problem, we study the approximation properties of the three art gallery problems
VERTEX GUARD, EDGE GUARD, and POINT GUARD. We prove that if the input polygon has no holes, thereisa
constant § > 0 such that no polynomial time algorithm can achieve an approximation ratio of 1+ 3, for each of
these guard problems. We obtain these results by proposing gap-preserving reductions from 5-OCCURRENCE-
MAX-3-SAT.

We also prove that if the input polygons are allowed to contain holes, then these problems cannot be
approximated by a polynomial time agorithm with ratio ((1 — ¢)/12)Inn for any ¢ > 0, unless NP C
TIME(n©09199M) \wheren isthe number of verticesof theinput polygon. Weobtain these resultsby proposing
gap-preserving reductions from the SET CovER problem.

We show that this inapproximability for the POINT GUARD problem for polygons with holes carries over
to the problem of covering a 2.5-dimensiona terrain with a minimum number of guards that are placed at a
certain fixed height above the terrain. The same holds if the guards may be placed on the terrain itself.

Key Words. Art gallery, Visibility problems, Inapproximability, Gap-preserving reductions, Terrains,
Telecommunications.

1. Introduction

1.1. Mativation. Triggered by the deregulation of the telecommunications markets
all over the world, and recently especially in Europe, companies are planning to set up
networksfor wirelesscommunication. Typically, such anetwork consistsof transmission
stations (antennas) that receive and send signals. The set of antennas needs to cover a
specific geographic region in its entirety. Putting up antennas is very costly, and hence
mobile phone companies aim at placing a minimum number of antennas that cover a
given region. Since the traditional way of erecting antennatowers on the ground suffers
from a number of obvious disadvantages, a novel approach isto put antennas up in the
air: balloons float at a certain fixed height and are held in geo-stationary position. The
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problem of finding a smallest set of balloons at a height of 20 km above sea level that
cover Switzerland is indeed the practical motivation behind our theoretical study.

1.2. The Problem. In the abstract version of this problem we are given a terrain,
described as afinite set of pointsin the plane together with a triangul ation, and a height
value associated with each point (this is also called a triangulated irregular network
(TIN), see, e.g., [16]). We are further given a desired antenna height that is above the
highest point of the terrain. The objective is to find a smallest set of antenna points
at the given height that covers the given terrain, that is, each point on the terrain must
be visible from at least one of the antenna points. Visibility is defined on the basis of
straight lines-of-sight: two pointsabovetheterrain aremutually visibleif their connecting
straight line segment runs entirely above (or on) the terrain. This concept models simple
electromagnetic wave propagation at high frequencies (GHz), ignoring effects such as
reflection and refraction.

1.3. Related Problems.  The described terrain covering problem can be seen to belong
to quite a large family of geometric covering and guarding problems that have been
studied for more than two decades. Legend has it that during a conference in 1976,
Victor Klee started the study by posing the following problem, which today is known as
the original art gallery problem: How many guards are needed to see every point in the
interior of an art gallery? In the abstract version of this problem, the input is a simple
polygon in the plane, representing the floorplan of the art gallery, and visibility is of
course limited to the interior of the polygon. The variations of this polygon guarding
problem that have been investigated can be classified as to where the guards may be
positioned (anywhere, or in any one of a few distinguished locations), what kind of
guards are to be used (single points versus sets of points, such as line segments, and
guards in stationary positions versus mobile guards), whether only the boundary or all
of the interior of the polygon must be guarded, what the assumptions are on the input
polygons (such as being simple or orthogonal). Many upper and lower bounds on the
number of necessary guards are known for specific settings, while comparatively few
papers study the computational complexity of finding good positions for the guards,
given a polygon. For more details, see any of several surveys on the general topic of art
galeries[18], [19], [23], [25]. In this section we only briefly summarize some relevant
previous results and give pointers to the literature; we give the exact definitions of the
problems we study in Section 2. For an up-to-date extensive survey on the state of the
art, consult [25].

As to the computational complexity of polygon guarding problems, it is known that
the problem of covering a polygon with a minimum number of convex polygons (that
may overlap) is NP-hard for input polygons with holes [20], and also for polygons
without holes [8]. The POINT GUARD problem asks for a smallest set of points that
together see a given polygon in its entirety; it is equivalent to the problem of cov-
ering a polygon with a minimum number of star-shaped polygons, and this is also
NP-hard for input polygons with [20] and without [17] holes. The two problems VER-
TEX GUARD and EDGE GUARD (where the guards that together see a given polygon
in its entirety are constrained to be vertices and edges of the polygon, respectively)
are NP-hard even for input polygons without holes [17]. Approximation algorithms for
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VERTEX GUARD and EDGE GUARD which achieve approximation ratios of O(logn) are
also known [13]. The approximation algorithms work for polygons with and without
holes.

1.4. Aims and Scope of this Paper.  Urrutia points out that approximability results for
polygon guarding problems are dearly needed [25]. The approximability of aproblemis
interesting from both sides, the upper bound and the lower bound. Upper bounds come
from approximation agorithms that achieve a certain approximation ratio, as has been
done for VERTEX GUARD and EDGE GUARD [13]. Lower bounds on the approximation
ratio are the subject of this paper.

In Section 2 we give exact definitions of the problems we study. In Section 3 we
obtain results for VERTEX GUARD, EDGE GUARD, and POINT GUARD for input polygons
without holes that prove that for each of these problems thereis a constant § > 0 such
that no polynomial time algorithm can achieve an approximation ratio of 1 + §. We
obtain these results by proposing gap-preserving reductions [2] from 5-OCCURRENCE-
MAX-3-SAT that are based on reductions originally used to prove the NP-hardness of
these problems [17].

Weprovein Section4that if theinput polygonsareallowed to contain holes, thenthese
problemscannot be approximated by apolynomial timealgorithmwithratio (1—¢) 1—12 Inn
for any ¢ > 0, unless NP € TIME(n®(09!%9m) "where n is the number of vertices of
the input polygon. We obtain these results by proposing gap-preserving reductions from
the SET CoVER problem (i.e., arestricted version of SET COVER, which corresponds to
DOMINATING SET).

We show in Section 5 that our proof for the POINT GUARD problem for polygonswith
holes carries over to the problem of covering a2.5-dimensional terrain with a minimum
number of guards that are placed either at a certain fixed height above the terrain or on
the terrain itself.

After presenting all of these inapproximability results, we summarize the approx-
imability results known for these problemsin Section 6. Finally, we show which of our
results are optimum and which results might be improved and draw some conclusions
in Section 7.

2. Preliminaries

DerINITION 1. A polygonal chain P isanordered sequenceof pointspy, ..., pn,n > 3,
in the plane, called the vertices of P, together with the set of line segments joining p;
to pis1, i = 1,...n— 1, caled the edges of P. A polygonal chain is called closed if
p1 = pn; otherwiseit iscalled open. For aclosed polygonal chain, we sometimesrefrain
from repeating the first vertex p;, and we end the chain with p,_j.

DErFINITION 2. A polygona chainiscalled simpleif the only intersections of edgesare
those at common endpoints of consecutive edges. A simple, closed polygonal chain P
divides the plane into two regions, the interior and the exterior of P, where the exterior
isthe unbounded region and the interior is the bounded region (it does not contain aline
or even a haf-line).
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DerINITION 3.  The interior of a simple, closed polygonal chain P, together with P,
is called a simple polygon without holes. Its boundary §P isjust P. For simplicity, the
polygon is denoted by P aswell.

DerINITION 4. A polygonistheunion of afinite number of simple polygons. A polygon
P is called connected, if any two points of P can be joined by a polygonal chain that
belongs to P. A connected polygon P is called simply connected if every polygonal
chain between two boundary points that does not pass through any other boundary point
divides P. A connected polygon that is not simply connected is called a simple polygon
with holes.

Note that a simple polygon with holes P can be represented by a finite number k of
polygonal chains Py, .. ., Py that represent its boundary, where P; isthe outer boundary
of the polygon, and the P, fori = 2, ..., Kk, are the boundaries of the holes. For this
representation to work, werequirethat P € Py fori =2,...  kandthat R NP = ¢
fori # jandi,j = 2,...,k. The interior of P is the set difference between P,
and theinteriors of P, ..., P« viewed as simple polygons without holes. Note that the
boundariesof P, ..., P belongto P.

Sinceweonly deal with connected polygonsin thefollowing, we usetheterm polygon
for a connected polygon, with or without holes.

Among the multitude of notions for visibility between two points in a polygon, we
use the following:

DEFINITION 5. Let P beapolygon, and let A and B be points belonging to P. Points
A and B are mutually visible with respect to P, if the straight line segment connecting
A and B belongsto P. We also say that A and B see each other, that A isvisible from
B, and that A sees B. For aset Q and aset S of points of P, we say that Q isvisible
from Sif for each point g € Q thereisapoint s € Sthat seesq.

Note that visibility is symmetric for single points, but not for sets of points: while a
set Q may be visible from a set S of points with respect to a polygon P, it may not be
truethat Sisvisiblefrom Q. We therefore call Q the set of guarded points and Sthe set
of guard points (or simply guards).

We now define the problems we are studying.

DEFINITION 6. Let P beasimple polygon without holes. The problem VERTEX GUARD
(VG) is the problem of finding a minimum subset S of (the set of) vertices of P such
that the boundary of P isvisiblefrom S. The verticesin S are called vertex guards.

Notethat, as usual, aminimum subset of a set denotes a subset of smallest cardinality
among al candidate subsets.

DEFINITION 7. Let P be asimple polygon without holes. The problem EDGE GUARD
(EG) isthe problem of finding aminimum subset Sof edgesof P such that the boundary
of P isvisiblefromthe pointsin S. The edgesin S are called edge guards.
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DEFINITION 8. Let P be asimple polygon without holes. The problem POINT GUARD
(PG) isthe problem of finding a minimum set S of points belonging to P such that the
boundary of P isvisiblefrom S. The pointsin Sare called point guards.

VG, EG, and PG can also bedefined suchthat all of theinterior (and not only thebound-
ary) of theinput polygon P must bevisiblefrom at least one guard (see[17]). We denote
the corresponding problems by VGI, EGI, PGI, wheretheletter “1” standsfor “interior.”
Finally, we can define these problemsfor input polygonswith (instead of without) holes.
We denote this by adding a letter “H,” if we alow the input polygons to contain holes,
i.e., VGH, EGH, PGH, VGIH, EGIH, PGIH asopposed to VG, EG, PG, VGI, EGI, PGI.

We can define similar problems when the input structure is a terrain rather than a

polygon.

DEFINITION 9. A terrain T is atwo-dimensional surface in three-dimensional space,
represented as a finite set of vertices in the plane, together with a triangulation of their
planar convex hull, and a height value associated with each vertex. By alinear interpo-
lation in between vertices, this representation defines a bivariate, continuous function.
The corresponding surface in space is also called the 2.5-dimensional terrain. A terrain
dividesthree-dimensional spaceinto two subspaces, i .e., aspace above and aspace bel ow
the terrain, in the obvious way.

For simplicity, we describe the terrain problems in the Cartesian x—y—z space, where
the z-value denotes the height of terrain points.

DeriNITION 10. Let T be aterrain, and let A and B be two points in space above or
on T. Point A is visible from point B with respect to T if the straight line segment
connecting A and B isentirely on or above T.

For antennas, this definition does not model al aspects of electromagnetic wave
propagation exactly, since, e.g., the signal of an antenna gets weaker as it propagates,
and the signal is reflected on a rocky wall. However, for the practical problem that
motivates this study, the straight line-of-sight (LOS) approach provides a satisfactory
approximation of reality.

For aterrain, we consider the following problems:

DEFINITION 11.  Let T be aterrain. The problem VERTEX GUARD ON TERRAIN (VGT)
is the problem of finding a minimum subset S of vertices of T such that T is visible
from S.

DEFINITION 12. Let T beaterrain. The problem POINT GUARD ON TERRAIN (PGT) is
the problem of finding aminimum set S of pointson T such that T isvisiblefrom S.

DEFINITION 13.  Let T beaterrain, and let h beaheight value, such that theplanez = h
lies entirely above (or partially on) T. The problem GUARDS AT FIXED HEIGHT OVER
TERRAIN (FHT) isthe problem of finding a minimum set S of pointsin space at height
h suchthat T isvisiblefrom S
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We now define three additional, similar terrain guarding problems. The reason isthat
our inapproximability resultsfor guarding terrainswill be formulated for terrain problem
versionswith the additional restriction that each trianglein thetriangulation of T must be
visiblefromasingle pointintheguard set S; that is, guards are not allowed cooperatively
toseeatrianglein T'striangulation, contrary to the problem versions above. We denote
these problem versions with an extra letter “R” that stands for “restricted.” Hence, we
get terrain guarding problems VGTR, PGTR, and FHTR.

We prove our inapproximability results by proposing reductions from the following
problems.

DEerFINITION 14. Let ® be a boolean formula given in conjunctive normal form, with
each clause consisting of at most three literals and with each variable appearing in at
most five clauses. The problem 5-OCCURRENCE-MAX-3-SAT consists of finding a truth
assignment for the variables of ® that satisfies as many clauses as possible.

5-OCCURRENCE-MAX-3-SAT is MAXSNP-complete [21], which means that there is
a constant § > 0 such that 5-OCCURRENCE-MAX-3-SAT cannot be approximated by
a polynomia time agorithm with aratio 1 + § unless NP = P. (It also means that
there exists a polynomial time approximation algorithm for the problem that achieves a
constant ratio.) Let APX bethe class of optimization problemsthat can be approximated
by polynomia time algorithms with a constant ratio (see [6], [7], [15], and [24] for
details on the relationship of these two complexity classes). 5-OCCURRENCE-MAX-3-
SAT is AP X-complete as well.

DeFINITION 15. Let E = {ey, ..., e} beafinite set (called universe) of elements, and
let S = {sy,..., sm} beacollection of subsetsof E, i.e., 5§ € Eforl < j <m.The
problem SET CoVvER (SC) is the problem of finding a minimum subset S € S such
that every element g € E, 1 <i < n, belongsto at least one subset in S'. For ease of
discussion, let the elementsin E and the subsetsin S have an arbitrary, but fixed, order,
denoted by the index.

DerINITION 16. Let G = (V, E) bean undirected graph with n verticesV = {vy, ...,
vn} and edges E. The problem DOMINATING SET consists of finding a minimum set S
of vertices such that each vertex v; € V has at least one neighboring vertex in S, i.e,,
for each vertex v; € V, there existsavertex v; € S with (v;, vj) € E.

SET CovER and DOMINATING SET can be approximated in polynomial time with a
ratio of 1 + Inn by a simple greedy algorithm [4], [14], but it cannot be approximated
by any polynomial time algorithm with aratio of (1 — ¢)Inn, for any ¢ > 0 unless
NP C TIME(n©(09lam) "where n is the number of elements for SET CoveR and the
number of verticesin the graph for DOMINATING SET [4], [12].

3. Inapproximability Resultsfor Guarding Polygonswithout Holes. Inthissection
we propose a reduction from 5-OCCURRENCE-MAX-3-SAT to PG, anayze it, and show
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that it is gap-preserving. This implies that PG is APX-hard. We also show that APX-
hardness follows for the problems VG, EG, VGI, EGI, and PGI.

3.1. Construction of the Reduction. We present the construction for PG. Suppose we
are given an instance | of 5-OCCURRENCE-MAX-3-SAT. Let | consist of n variables
X1, ..., %Xyandof m < gn clausescy, ..., cym. Taking instance | asinput, we construct
apolygon P, whichisaninstance |’ of PG.

Overview. The polygon P contains six different kinds of basic units, called patterns.
These are called literal, clause, variable, ear, body, and spike patterns. Each patternis
a polygon, which will be part of the final polygon P. We abtain the final polygon by
taking the union of all patterns. Each pattern (except for the body pattern) contains a
distinguished tuple.

DEFINITION 17. A distinguished tuple (pi, pj, Pk, i) of apatternisformed by thefour
vertices pi, p;, Pk, P of the pattern with the following properties:

— pi and p; are neighboring vertices(i.e.,, j =i +1or j =i —1).

— Any guard that sees an arbitrarily small part of the edge from p; to p;, whichincludes
vertex p;, must lie inside or on the boundary of the pattern, even if we consider the
edges of the pattern, which form the path between the vertices px and p (not taking
the route that includes vertex p;), to be transparent.

As an example, consider the polygon in Figure 2, in which (gs, 0s, gs, 1) isadis
tinguished tuple. The fact that the edge from q; to qgg is transparent is indicated by a
dashed line. Polygon components will be composed by attaching them to each other
at transparent edges; these edges will, hence, disappear in the composition, and their
transparency indicates just this.

DEFINITION 18. Let (pi, p;j, Pk, pr) be adistinguished tuple of a pattern. Then an ar-
bitrarily small part of the edge from p; to p; starting at p; and going toward p; iscalled
adistinguished arrow.

Distinguished tuples and distinguished arrows will help us define an algorithm that
obtains a truth assignment for the variables of 1, if it is given a solution (i.e., a set of
guards) of 1.

The reduction works as follows: For each literal, we construct aliteral pattern, each
of which contains a vertex T'"' and a vertex F't, which corresponds to the truth value
of the literal, if a guard sits there. Three literal patterns form a clause pattern in such a
way that the clause pattern can only be guarded by a minimum number of guards, if at
least one literal in the clause is true. We construct a variable pattern for each variable,
which contains avertex TV® and avertex FY&, which corresponds to the truth value of
the variable. Finaly, spike patterns are used to connect variable and literal patternsin
such away that a minimum number of guards is only possible, if the truth values are
assigned consistently.

We first introduce the literal, clause, variable, ear, and body patterns. We then show
how these patterns are put together, and finally we define spike patterns.
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Fig. 1. Literal pattern.

Literal pattern. Letlj(c),forj =1,...,3andi =1,..., m, denotethe jthliteral of
the ith clause. Note that I;(¢) = Xk or Ij(¢)) = —x for somek = 1,..., n. For each
literal 1;(ci), we construct a literal pattern as shown in Figure 1. The literal pattern is
the polygon defined by the points p1(l;(ci)), ..., pe(lj(Ci)), given in counterclockwise
order as shown in Figure 1. Whenever it is clear which literal we are talking about, we
will denote vertex py(lj(ci)) simply by p«, omitting the argument, as done in Figure 1.
The edge from pg to p; isnot part of the final polygon, but serves as an interface to the
outside of theliteral pattern. We will lose this edge when we form the union of theliteral
pattern with aclause pattern. As before, the transparent edge from p; to pg isdrawn asa
dashed line. All other edgesintheliteral pattern are part of thefinal polygon. The points
P4, Ps, Py arecollinear. Note that aguard at point p; or point ps seesall of the interior
of theliteral pattern. The final construction will be such that aguard at point p; implies
that theliteral istrueand aguard at point ps impliesthat theliteral isfalse. We, therefore,
call point py(lj(c)) simply T'(l;(c;)); similarly, ps(j(c)) iscaled F't(l;(ci)). Note
that (ps, ps3, P1. Pe) isadistinguished tuple. Thedistinguished arrow (ps, p3) ismarked
by an arrow in Figure 1.

Clausepattern.  For every clause ¢;, we construct a clause pattern as shown in Figure 2.
Theclausepatternfor ¢; isthepolygon defined by theverticesqi (c;), . . ., gs(c;). Vertices
Js, 07, G2, and qg are collinear. The tuple (gs, Os, 01, Gg) is adistinguished tuple.

We form the union of the clause pattern of clause ¢; and the three literal patterns
11(c), lo(c), and11(c) asindicated in Figure 3. Note that thisisdonein such away that
aguard at vertex T'I of any of thethreeliteral s sees the distinguished arrow of the clause

Fig. 2. Clause pattern.
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Fig. 3. Union of clause pattern and literal patterns.

pattern, while a guard at a vertex F't of any literal pattern cannot see the distinguished
arrow of the clause pattern.

Variable pattern. For every variable Xy, we construct a variable pattern as shown in
Figure 4. The variable pattern isthe polygon defined by the verticesri(xy), . . ., r11(Xx).
We call the polygon defined by the verticesry, ro, r3, r4 the TRUE leg of the variable
pattern and the polygon defined by rs, rg, r7, r11 the FALSE leg of the variable pattern.
The vertices rg, 19, 1 are collinear, and so are vertices r, rg, g, r11, and also ver-
ticesry, r4, rs, rg. The shape of the variable pattern can be changed dlightly (as will be
done in the final construction), as long as the collinearities are maintained. The tuple
(ro,rg, 1, r1y) isadistinguished tuple.

In the final polygon it will turn out that a guard sits at point ry if the variable is
assigned the valuetrue, and it sitsat point rs if the variableisfalse. Therefore, we define
TV (Xk) := ra(xx) and FY¥(xy) ;= rs(Xq).

Ear pattern. The ear pattern is necessary for technical reasons. Its use will become
evident in the analysis of the reduction. An ear pattern is the same as a literal pattern.
However, it is not associated with any literal. We use the same numbering as for the
literal pattern and denote the vertices of the ear pattern by wy fork =1,..., 6.

Body pattern. The body pattern is arectangle with vertices by, . . ., bs. These vertices
are shown in Figure 5.

Forming the union of the components. We put al piecestogether asshownin Figure 5.
Thelegs of the variable patterns are such that aguard at point w; seesall the legs of the
variable patterns. We call the polygon obtained at this stage P’.

Fig. 4. Variable pattern.
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Fig. 5. Putting the pieces together.

Soike patterns. A spike pattern s is a triangle shaped polygon with some additional
vertices on the edges. Inthefinal polygon, therewill be one spike pattern for each vertex
T'"" and F'"t, which are of dlightly different types. Figure 6(a) shows the type of spike
patterns for vertices T''t, which we call TRUE spike pattern; Figure 6(b) shows the type
of spike patterns for vertices F''t, which we call FAL SE spike pattern. The spike pattern
sisthe polygon with vertices s, . . ., S5, (Ss). We have the following collinearities:

— Vertices sp, S3, &4 are collinear.
— Vertices s, 51, (S5), S5 are collinear.

() ih

Fig. 6. () TRUE spike pattern; (b) FALSE spike pattern.
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Fig. 7. Spikes patterns for a positive literal.

The tuple (s, S3, S1, S3) is adistinguished tuple, if we change the definition in such a
way that the edge from s, t0 S5 is not transparent, as indicated in Figure 6 and in such a
way that the view of a guard that islocated on the extension of the line from s, through
s, is blocked by the vertex s;.

Adding spikes to the construction.  We form the union of the spikes with the polygon
P’ asfollows: We construct for each literal |; (c;) in each clause two spike patterns (one
TRUE and one FAL SE spike pattern) as shown in Figures 7 and 8.

Figure 7 isfor the case, when literal |; (c;) ispositive (i.e., |;(C) = X, for somek). In
this case we have a TRUE spike pattern s(T"(I; (c;)), FY®(x«)), which connects vertex
T' of the literal pattern | (ci) with vertex FY@ of the variable pattern X, and a FALSE
spike pattern s(F'"'(I;(ci)), TV (x«)), which connects vertex F'I' of the literal pattern
lj (i) with vertex TV¥ of the variable pattern x.

Figure 8 is for the case when literd I;(c;) is negative (i.e., | (c;)) = —Xx, for some
K). In this case we have a TRUE spike pattern s(T"'(l; (¢ )), TY® (x«)), which connects
vertex T' of the literal pattern I;(c;) with vertex TY of the variable pattern x,, and a
FALSE spike pattern s(F'"'(1; (ci)), F¥¥(x«)), which connects vertex F'"t of the literal
pattern |; (c;) with vertex F¥¥ of the variable pattern xy.

For each TRUE spike pattern s, we have the following, where pg and T are vertices
of the corresponding literal pattern:

-5 = Tlit.
— %, S5, and pg are collinear.
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Fig. 8. Spike patterns for a negative literal.

For each FAL SE spike pattern s, we have thefollowing, where pg and T' are vertices
of the corresponding literal pattern:

- 5= Flit_
— & = Pe. _
— 51, %, and T'' are collinear.

For each spikepatterns(T"t, F¥@) or s(F't, F¥@) wehavethefollowing collinearities,
where g7, gg, and F¥¥ are vertices of the corresponding variable pattern:

— 51, FY¥, s5 are collinear.
- U7, S1, S3, (s @re collinear.

For each spike pattern s(T"t, TV@) or s(F'"t, TV¥) we have the following collinearities,
where g3, g4, and TV are vertices of the corresponding variable pattern:

— 5, TV¥ s are collinear.
- q37 Sl’ %9 q4 areCO”'near

Asaresult, we obtain the polygon P, which istheinstance |’ of PG.

Feasibility of the construction. Remember that, in order to see an arbitrarily small part
of the edge from s, to s3 including s, of each spike pattern s, a guard must lie in the
interior or on the boundary of s, because (s;, S3) isadistinguished arrow.

In order to prove our inapproximability result for PG, we must ensure that the fol-
lowing holds:
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Fig. 9. Detailed construction.

LEMMA 1. Instance |’ of PG (i.e, the polygon P) can be constructed from the 5-
OCCURRENCE-MAX-3-SAT instance | in such a way that no three spike patterns that
connect literal patterns to three different legs (of the variable patterns) intersect in a
common point.

PrROOF. We prove the lemma by giving a detailed description of how this can be
achieved. An overview of the construction is given in Figure 9.

We start with the first literal pattern I1(cy). First, fix vertex ss(T"'(11(cy)), -) of the
TRUE spike pattern on a horizontal line h. Then set vertex T'(1,(c,)) at adistancea(l)
to the left of s5(T't(11(c1)), -) on the horizontal line h. Fix vertex ss(F"t(11(cy)), -) of
the FAL SE spike pattern at a constant distance to the left of T''(I1(c1)) on h, then set
vertex s4(F'"'(I1(cy)), -) at distance a(l) to the left of ss(F'(11(cy)), -) on h. Then fix
vertex s5(T'(15(cy)), -) of the TRUE spike pattern of the second literal pattern at constant
distance to the left of s4(F""'(11(cy)), -) on h and repeat the procedure for al literals.

Notethat a(l) dependsontheinstance(i.e., a = a(l)). Choose w; (of the ear pattern)
at a constant distance to the left of the point ss(F'(I3(cm)), -) (of the leftmost literal)
and at distance a’(l ) below the line h.

Assume that the variable patterns for the variables x, . . ., Xx—1 have aready been
constructed, that the vertices TY® of all of these variable patterns lie on the same hori-
zontal line b, which is at constant distance from h, and that the verticesr, rs, re, r7 al
lie on the same horizontal line h”, which is at distance a” (1) from h’. We show how to
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construct the next variable pattern for variable x,. We determine point TV¥(x) of the
variable pattern as follows:

Determine the rightmost of the (at most five) literal patternsthat isaliteral of x,. We
assume that it is a negative literal 1 (c;). (The case where it is a positive literal can be
treated similarly.)

Set vertex TY¥ (xx) on the horizontal line h' to the left of all the variable patterns
already constructed in such a way that there exist no areas where two spike patterns
connecting literals with two different legs of variable patterns intersect, to the left or on
the line from TV (x,) to ss(T"'(l;(G)), TV (xk)).

The intersection of the line h” with the line from w; through TV yields vertex r».
Fix r3 at aconstant distance to the left of r, on h” and fix some (auxiliary) point pax at
a constant distance to the left of r3 on h”. The intersection of the line from s5 through
TV¥ with the line from w; to pay Yieldsvertex s;; it yields vertex s; if intersected with
the line from wy to r3 . Intersecting the line from w, to pay With the line from T't to
S, gives vertex s;. Thus, we have constructed the TRUE leg with the first spike pattern.
Now, construct all remaining spike patterns for the leg. Note that their vertices s, are
strictly below vertex s, of the first spike pattern constructed. Also note that the distance
a(l) must be chosen small enough such that no two spike patternsintersect to the left of
thelinefromrs to ws.

We construct the FALSE leg in a similar way, however, we need an auxiliary point
PLx Whichisset onthehorizontal lineh’ in suchaway that there exist no areaswheretwo
spike patterns connecting literalswith two different legs of variable patternsintersect, to
the left or on the line from p},,, to the vertex ss (or sg) of the spike pattern that connects
the rightmost literal pattern that represents a literal of the variable. Let v be a vertica
line at some constant distance to the left of p, . Vertex F¥¥ isthe intersection point of
v with either theline from s5 (or sg) through pj,,, or the linefrom TY¥ through vertex s;
of the topmost spike pattern in the TRUE leg, whichever is closer to the horizontal line
h’. The remaining vertices of the leg and the spike patterns are then constructed asin the
TRUE leg.

The variable pattern can now be completed by just observing the required collineari-
ties.

Once we have constructed all variable patterns, we need to construct the literal pat-
terns. For each literal, proceed as follows:

Let v’ be a vertical line at some constant distance to the right of vertex s of the
FAL SE spike pattern of the literal. Vertex F'It istheintersection of v’ with the line from
s, through s of the FALSE literal pattern. Constructing the remaining vertices of the
literal pattern is straightforward by observing the required collinearities.

We compl ete the clause pattern in a straightforward manner, observing al collinear-
ities and the requirement that aguard at avertex F''t of some literal pattern may not see
the distinguished arrow of the corresponding clause pattern. Vertices g; and gg of each
clause pattern are on the same horizontal line as wy, which is at distance a’(1) from
line h. Note that a'(1), therefore, must be chosen small enough such that the polygonal
chainsfrom q; to g4 and from gs to gg do not intersect any spike patterns.

We compl ete the construction asindicated in Figure 5.

An analysis reveals that the coordinates of al points can be computed in polynomial
time; some coordinatesrequireapolynomial number of bits. Theanalysisissimilar tothe
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Fig. 10. Different types of guard moves.

analysisfor PGH, which isgiven in full detail in Section 4. Therefore, the construction
is polynomial in the size of the input. O

3.2. Transformation of a Feasible Solution.  We describe how to obtain an assignment
of thevariables of the satisfiability instance (i.e., asolution of 1), given afeasiblesolution
of the corresponding PG instance | '. We move guardsin such away that the set of distin-
guished arrows that a guard sees changes in only one of two ways: The first possibility
is that the set remains the same or contains some additional distinguished arrows. The
second possibility is that some distinguished arrows are removed from the set, but then
it isensured that some other guards see the distinguished arrows that were removed. The
guardsare moved asfollows (we haveillustrated some of these movementsin Figure 10):

— Determine which guard isinside the ear pattern wy, .. ., wg (see Figure 5) and move
this guard to w1 asindicated at () in Figure 10.

— For each litera pattern, determine which guard sees the distinguished arrow (such a
guard must be inside the literal pattern). If this guard is at vertex F'", then leave it
there, otherwise, move it to vertex T'" asindicated at (2) in Figure 10.

— If thereis aguard at both vertices T'" and F'"t of the literal pattern, move the guard
at F''" along the edge of the FAL SE spike pattern toward vertex s, to the vertex FV@
or TV of the corresponding variable pattern asindicated at (3) in Figure 10; note that
the guard at T''* does not move.

— If thereismore than one guard at some vertex T''' (F''"), move all but one guard along
the edge of the TRUE (FALSE) spike pattern toward vertex s, to the vertex FY& or
TV¥ of the corresponding variable pattern.

— For each clause pattern, move any guard that seesthe distinguished arrow of the clause
pattern and lies in a TRUE spike pattern to the vertex T''® that is on the boundary of
the spike pattern.

— For each clause pattern, consider a guard g that sees the distinguished arrow of the
clause pattern and liesin aFAL SE spike pattern. If there already isaguard g’ at vertex
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F'it of the spike pattern, then move the guard g to vertex T't, otherwise, move the
guard g to vertex F'it,

— For each variable pattern, move the guard that sees the distinguished arrow of the
variable pattern to vertex TV, if it also liesin aspike pattern that contains vertex TV,
and move it to point F¥¥, otherwise, asindicated at @) in Figure 10.

— Move al guards that lie in a spike pattern but do not see the distinguished arrows of
any literal or clause patternto vertex TV or FV@ that is contained in the spike pattern.

— If aguard sees the distinguished arrows of two spike patterns that connect literalsto
two different legs of variabl e patterns, add aguard and move one guard each to thetwo
vertices TY® or FY¥ of the variable patterns that lie on the boundary of the two spike
patterns asindicated at (5 in Figure 10. (Note that because of Lemma 1, ho guard can
seethe distinguished arrows of three spike patternsthat belong to three different legs.)

— Guards that do not see any distinguished arrows are moved to any point TV or FY&
of any variable pattern, if thereis no guard there already.

This procedure is iterated until al guards are at their final position. The solution
obtai ned after moving and adding guardsasindicated isstill feasible. To seethis, notethat
after this procedure there is exactly one guard in each literal pattern at either point F't or
Tt Ineach clausepattern ¢; thereisat least oneguard at either T''(11(c;)), T"(12(c;)), or
T'(13(c;)). Therefore, all literal and clause patterns are guarded. The remaining polygon
(except for parts of the spike patterns) is guarded by the guard at point w, of the ear.
Finally, the spike patterns are guarded, since all guards that saw the distinguished arrow
of a spike pattern have been moved only within the spike pattern. Where such a guard
saw two distinguished arrows of two spike patterns, we have added a guard.

We are now ready to set the truth values of the variables. For each variable pattern
X, if thereisaguard at point FY¥(x) and no guard at point TV (xy), let x« befalse. If
thereisaguard at point TY¥ (xx) and no guard at point F¥¥(xy), let x¢ be true. If there
isaguard at both TV¥(x,) and FY¥(xy), then set xi in such away that a majority of the
literals of xx become true.

3.3. Analysis of the Reduction. Wefirst prove two lemmas that will help us prove the
APX-hardness of PG.

LEMMA 2. Ifaninstance of 5-OCCURRENCE-MAX-3-SAT with n variablesand m < gn
clausesissatisfiable(i.e., all m clauses are satisfied), then there exists a feasible solution
of the corresponding instance of PG with 3m + n + 1 guards.

PrOOF. Fix any truth assignment of the variables that satisfies the 5-OCCURRENCE-
MAX-3-SAT instance. Place one guard at w1 . For each variable xi, place aguard at point
FY&(xy) of the variable pattern if x isfalse. Place aguard at TV®(xy) if X, istrue. For
each literal 1j(c;) in each clause, place aguard at point T''(l;(c)) of the literal pattern
if the literal istrue. Place aguard at point F'"'(l; (c))) if the literal isfalse. This solution
isfeasible and consists of 3m + n + 1 guards. O

LEMMA 3. If there exists an ¢ > 0 and a feasible solution of the PG instance |’
with 3m 4+ n + 1 + em guards, then there exists an assignment of the variables of the
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corresponding 5-OCCURRENCE-MAX-3-SAT instance | that satisfies at least m(1 — 4¢)
clauses.

Proor. Inthefeasible solution of PG there must be at |east one guard inside each literal
pattern. There also must be at least one guard inside each variable pattern. Finaly, one
additional guard is needed at w;.

Now, move the guards according to the transformation given in Section 3.2. At most
em guards see the distinguished pairs of two spike patterns belonging to different legs,
since 3m guards are inside literal patterns, n guards are inside variable patterns and one
guard is at wy. Therefore, we have at most em additional guards.

We now set the truth values of the variables according to the transformation. For at
least n — 2em variable patterns, there is only one guard at either TV¥ (xx) or FY&(xy).
For at most 2em variable patterns, there isaguard at both points TV¥ (x,) and FY& (x).
When we set the truth value of each of these 2em variables, at most two clauses will be
unsatisfied for each variable. Therefore, we have at most 4em unsatisfied clauses. O

Now, consider the promise problem of 5-OCCURRENCE-MAX-3-SAT, where we are
given an instance of 5-OCCURRENCE-MAX-3-SAT, and we are promised that the instance
iseither satisfiable or at most m(1 — 4¢) clauses are satisfiable by any assignment of the
variables. The NP-hardness of this problem for small enough values of ¢ follows from
the fact that 5-OCCURRENCE-MAX-3-SAT is MAXSNP-complete (see [21] and [2]).

By Lemma2 and by the contraposition of Lemma 3, we obtain the following theorem.

THEOREM 1. Let | be an instance of the promise problem of 5-OCCURRENCE-MAX-3-
SAT, let n be the number of variablesin |, and let m < gn be the number of clausesin
|.Let OPT(l) denote the maximum number of satisfiable clauses (for any assignment).
Furthermore, let |’ be the corresponding instance of PG and let OPT (1) denote the
minimum number of guards needed to cover 1’. Then the following hold:

o IfOPT(l) = m,thenOPT(l") <3m+n+ 1
o IfOPT(l) <m(1—4¢),thenOPT(1") >3m+n+1+em.

Theorem 1 shows that our reduction is gap-preserving (see [2]). It shows that the
promise problem of PG with parameters3m + n + 1 and 3m+ n + 1+ emis NP-hard.
Note that m > n/3, since each variable appears as a literal at least once. Therefore,
unless NP = P, no polynomial time approximation algorithm for PG can achieve an
approximation ratio of

3M+n+1+em £ £ €
3m+n+1 3+(n+1)/m 3+3(n+1)/n 7

Thus, we have the following result:
THEOREM 2. PG is APX-hard.

Our proof works as well for PGI. To see this note that if we are given a solution of
the satisfiability instance and set the guards as indicated in Lemma 2, the guards see all
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of the interior and the boundary of the polygon. If we are given a solution of the PGI
instance and perform the transformation as given in Section 3.2, the guards still see all
of the interior and the boundary of the polygon. Therefore, we have:

THEOREM 3. PGl is APX-hard.

3.4. Inapproximability Results for VG, EG, VGI, and EGI. The proof for the APX-
hardness of VG can be copied from the corresponding proof for PG. Actualy, we do
not even need the property in the constructed polygon that no three spike pattern of
three different legs intersect (see Lemma 1). Since there are no guards added in the
transformation for VG, we would get a slightly bigger constant for the inapproxima-
bility of VG than the constant for PG, if we were interested in giving explicit con-
stants.
Thus, we obtain:

THEOREM 4. VG is APX-hard.

Our proof carries over to VGI using the same arguments as for PGI. Therefore, we
have:

THEOREM 5. VGI is APX-hard.

The proof for the APX-hardness of EG follows the lines of the corresponding proof
for PG with some modifications. The literal pattern and the variable pattern are sightly
different asshownin Figure 11. Note that F''t, T't, F¥& and TV® are edgesin the literal
pattern.

Theideasof the proof for PG can now beapplied here. Any solution of the EG instance
contains at least 3m 4+ n 4 1 guards. If we are given a solution of the EG instance we
can adopt the transformation procedure described in Section 3.2. Therefore, we obtain:

THEOREM 6. EG is APX-hard.
The proof works aswell for EGI. Therefore, we have:

THEOREM 7. EGI is APX-hard.

Fig. 11. (a) Literal pattern for EG; (b) variable pattern for EG.
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4. Inapproximability Results for Guarding Polygons with Holes. In this section
we propose a reduction from SET CovER to PGH, analyze it, and show that it is gap-
preserving. We also show that our result carries over to the problemsVGH, EGH, VGIH,
EGIH, and PGIH.

4.1. Construction of the Reduction. Asalfirst step toward our inapproximability result
for PGH, we show how to construct an instance of PGH for every instance of SET COVER
(SC). The construction contains atriangle-shaped pattern, called spike, for each element
of the SC instance. All spikes lie on the lower segment of a large rectangle, which is
“cut” into an upper and alower part by abarrier that contains trapezoidal holes, through
which a guard in the upper part, which corresponds to a set in the SC instance, can see
the spikes in the lower part, which correspond exactly to those elements that are in the
Set.

We construct apolygon in the x—y plane; Figure 12 showsthis construction. For each
sets,i =1,...,m,placethe point ((i — 1)d’, yp) onthe horizontal liney = yp. This
places a sequence of pointsfrom left to right, one point per set s fori =1, ..., m, with
d’ a constant distance between two adjacent points. For ease of description, call theith
point 5. For each element g € E, on the horizontal line y = 0 place two points (D, 0)
and (D;, 0), with D = D; + d for apositive constant d and D; > 0. Arrange the points
from left toright fori = 1,..., n, with distancesd; = D; 41 — D] to be defined later.
Cadll the pointsaso D; and D/, fori = 1,...,n.

cone

s N
JEEERERSE VI IV W

°l Y Siel N\ “n

distinguished poin

Fig. 12. Basic construction.
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For every element &, draw aline g through s; and D;, where s isthefirst set of which
g isamember. Also draw aline g’ through s and D/, where 5 isthe last set of which g
is amember.3 For simplicity, let g also denote the intersection point of g and g’. Then
draw line segments from every s, that has ¢ asamember to D; and to D;.

Two linesconnecting points D; and D; with pointss; form acone-likefeature; thearea
between these two lineswill therefore be called acone. Call thetriangle D; g D; aspike.
The point g of each spike plays a specia role and is therefore called the distinguished
point of the spike.

We have only constructed one part of the polygon thus far: Among all the lines
described, only the spikes and the line segments of the horizonta line y = 0 that are
between adjacent spikes are part of the polygon boundary, al other lines merely helpin
the construction.

I'n our construction the guards of an optimum solution will haveto be placed at or near
the pointss;, therefore we need to make sure that aguard at s; only seesthedistinguished
point &, if the element g is a member of the set 5. This is achieved by introducing a
“barrier” lineat y = b, see Figure 12. Only line segments on the horizontal liney = b
that are outside the cones are part of the polygon boundary. We draw another barrier
line with distance b’ from the first barrier at y = b + b’. Define holes of the polygon by
connecting endpoints of line segments of the two barrier lines that belong to the same
cone-defining line. We call the area between thetwo linesaty = bandy = b+ b/
(including all holes) the barrier. Thus, the barrier contains a small part of all cones.

As a next step in the construction of the polygon, draw a vertical line segment at
x = —d”, where d” is a positive constant, fromy = 0to y = yp. Thisline segment is
part of the polygon boundary except for the segment between the two barrier lines.

Choosethe coordinates (to be shown later) such that therightmost spikeisfarther right
than the rightmost set, i.e., D;, > sy, (for reasons of space, we violated this condition in
Figure 12), and draw another vertical linesegment fromy = Otoy = ypatx = D, +d”,
again taking a detour at the barrier. The boundary lines of the polygon defined so far are
shown as solid linesin Figure 12. It isimportant to note that the cones, drawn as dashed
linesin the figures, are not part of the polygon boundary.

The thickness b’ of the barrier is defined such that all segments of all holes except
for those on the liney = b + b’ can be seen from two guards at P, = (—d”, 0) and
P, = (Dy, + d”, 0). To achieve this, the thickness b’ is determined by intersecting (for
each pair of adjacent holes) aline from P; through the lower right corner (point G; in
Figure 13) of theleft hole (of the pair of adjacent holes) with aline from P, through the
lower |eft corner (point G,) of the right hole as shown in Figure 13. Now, the barrier line
y = b+ b’ isdefined to go through the lowest of all these intersection points (point y; in
Figure 13). (They areindeed all at the same height, by argumentswith similar triangles.)

We set the parameters of the reduction asfollows: Let d’ and yg be arbitrary positive
constants. Let d and b bepositive constantsaswell, whered = d’'/4andb = 1—52 Yo. Welet

- (35/12)yo
S —4-im-t 2 A m  2(d7/d) — 12
and D, = —4-m-d—d+2dY)

b/

o4mforl =1,...,n.

3 We assume without loss of generality that each element is amember of at least two sets.
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Gy

Fig. 13. Thickness of the barrier.

4.2. Propertiesof the Reduction. Inorder for the reduction to work, it is necessary that
at no point does a guard see three or more distinguished points g unless there is a set
s or apair of setss;, § that (together) contain(s) all of the corresponding elements.

A guard that is placed at some point with y-value between O and b + b, i.e., between
the barrier and the spikes, sees at most one such distinguished point, provided the barrier
is placed such that no cones of two different elements intersect in the area below the
barrier and in the barrier.

In order to ensurethat aguard that is placed at some point with y-value between b+ b/
and yo does not see three or more distinguished points unlessthereisaset s; or apair of
sets i, § that (together) contain(s) al of the corresponding elements, we introduce the
notion of extended cones as shown in Figure 14. The extended cone is the area in the
rectangle Dj, Dy, 5 + a, 5y — a. Point 5; — a is defined as the intersection point of the
line y = yp with the line from D] through the lower right corner of the left of the two
holes which contain a part of the cone from set s; and element & . Point s; 4 a is defined

Fig. 14. Extended cones.
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accordingly. It will be easy to see that points s; — a and s; + a are both at a constant
distance a from point s; (see the proof of Lemma4).

For aguard between thetwo horizontal linesy = b+b’ and y = yj, inorder to seethe
distinguished point g, it must lie in the area of the triangle defined by the points hy, hy,
and g (or, of course, in the corresponding triangle of any other point s with e € s;/).
In order to keep the analysis simple, we argue with the extended cones rather than the
triangles. If no three extended cones from three different elements and three different
setsintersect in this area, then it is ensured that there exists apair of setpoints such that
each distinguished point that aguard in this area sees can also be seen from at least one
of the setpoints of the pair. (It is, of course, also possible that a single setpoint sees all
the distinguished points that a guard in this area sees).

A guard that is placed at some point with y-value less than O, sees at most one
distinguished point, if it is ensured that no two spikes intersect.

Thus, we need to prove the following:

— No three extended cones from different elements and sets intersect.

— Thebarrier is such that all intersections of cones from the same element g are below
b (to ensure that the view of the points s; is blocked appropriately) and such that all
intersections of cones from different elements are above b + b’ and such that al of
the barrier except for theline segmentsat y = b + b’ can be seen from at least one of
two guards at P; and P..

— No two spikes intersect.

No three extended cones from different elements and sets inter sect

LEMMA 4. Forg €5, let

s -9

D > max<7
S —s—2a

(Dj +d — Dj) + Dj +d),

where the maximum is taken over all § € s and g € s, for whichi < j < | and
I” < j” < i’ holds. Then the three extended conesfrome to s/, frome tos, and frome;
tosy, withi < j <1, do not have a common intersection point.

ProOOF. Assumethat the positions of the elements, i.e., the values D,,, have been set for
al v < | such that no three extended cones (connecting three different sets with three
different elements) intersect. We show how to set D, such that no three extended conesin-
tersect; seeFigure15. Let Sbeanintersection point with themaximum y-valueamong the
two extended conesconnectingtheelementse and g withthe(different) pointss;, ands;:.

In order to ensure that our construction is feasible, S must lie in the area between vy
and the barrier. Let S, be the y-value of S. Then §; < yo. To see this, note thet this is
equivalent to saying that s + a < s — a (see Figures 14 and 15), which is a weaker
conditionthan s +a < 511 —a. Now, 5y +a < 541 —aisequivaentto 2a < d'.
We express a as a function of yp, b, and d using the similarity of triangles. Note that
a'/d = (yo—b)/yoand b/yo = @' /a. Thus, weget a = ((1 — b)/b)d. Using this result
in2a < d’, we obtain

2

b > 7d,/d+2)m,
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] b

Fig. 15. Intersection of three extended cones.

whichisequivalenttob > %yo, sinced = d’/4. Thisinequality for b is satisfied, since
b= 1—52y0 > %yo-

For each set 5/ of which g is a member, draw a line through S, determine where
it intersects the line y = 0 and let DS, be the x-value of this intersection point. Let
D = max; D7, be the maximum x-value of all intersection points defined this way.
For any pair of extended cones in “inverse position” to the left of g, with which an
extended cone at g forms a “triple inversion,” compute the corresponding DS and let
D™ be the maximum DS. Finaly, we let D; = D™ + d to ensure that no three
extended cones have one common intersection point at some point S. Figure 15 shows
the situation for an intersection and explains the notation.

The point Sis the intersection point of the lines g; froms, — a to D; and g, from
sy +atoDj.

These two lines can be expressed with parameter t € R:

s —a Di
: 1-t -|—t< )
gr ( )( Yo > 0
o3 ()
DAt +t .
g ( )< Yo 0
Theintersection is characterized by parameterst; and t, for g; and ga:
1 -t)yo = (1—-1t2)Yo,
A-t)(s —a)+tuDi = (1-t)(§ +a) +tDj.

Thefirst equation leads to t; = t, and one obtains, for t;,

S —s/—2a
DJf—Di+sf—sj/—2a'

t =

We express Sas

S— ((1—'[1)(54" —-a) +tlDi)
Yo(1 —t1) '
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Let g3 bethelinefroms: — ato Switht € R as parameter:

S — a) th<(1— t)(s —a) + tlDi>
Yo Yo(1—1t1) ’

The intersection of gz and y = 0 is characterized by parameter t3:

0 (1- t)(

A—-t3)yo+t3(1—t)yo = O,
t — 1
3=y

We let Dlﬁ, be the corresponding x-value:

S 1 1 1
DYy = |1-— )& -+ -—A-t)s —a)+ —tD;
t1 t t
1
= (1——> (s' —s/)+ D
t
s —s
=% (D)-D)+D
S’ _ Sj/ _ za( j I) + |
= ¥=% _(Dj+d-D)+D.
S/ —S]‘/ —2a
The lemmafollows. O

Lemma4 implies

S -9

d —2a
<4m(Dj_; +d) +d,

< max <m—d(Dj +d) +d) ¥j <)

where we have used a = ((1 — b)/b)d = %d and d’ = 4d in the last step. Now, let
Dy = 4m(D,_1 + d) + d. It is easy to see that this is consistent with our definition of
D, since

-1 |-2
A4 'm-1d —d + 2dZ4i m = 4m ((-4'—2m'—2d —d+2d Z4i mi> + d) +d.

i=0 i=0
Thebarrier isin good position

LEMMA 5. Any two cones that belong to the same element g intersect only at points
with y-values at most yo(d/(d + d)).
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PrOOF. Lete beamember of sj ands and s < §. Theintersection point of the lines
g: froms; to D{ and g, from s to D; isthe point in the intersection area of the two cones
that has the largest y-value. Let this value be y..

These two lines can be expressed with parameter t € R:

. S D
o (1—t)<yO)+t(0),
) (S D
o0 A t)<y0> +t< O).

Theintersection is characterized by parameterst; and t, for g; and ga:
1-t)yo = (1 -t2)Yo,
(1—t1)Sj —I—tDI/ = (1-t)g +tD;.
Thefirst equation leadsto t; = t, and one obtains, for t;,

s-s

t = .
" D{-Di+s-g

Since D] — Dj =d andsinces — s, > d’, we get

d
Pars—s
d
d+d-’

Ye =

< Yo O

LEMMA 6. Any two cones that belong to elements g, g, respectively, with i < j,
intersect only at points with y-values at least yo(d; /(d; + md")).

PrROOF. Let g beamember of 5. and let g be amember of s/, alsolet D; < D; and
Sy < s-. Exactly then, the corresponding two cones intersect.
The intersection point of the lines g, from s, to D; and g, from s to D; is the point
in the intersection area of the two cones with the minimum y-value. Let thisvalue be y..
These two lines can be expressed with parameter t € R:

. (S D
@ @ t)<yo> +t< 0 )
. S Dy
9 (1_t)<yO>+t<0)'

Theintersection is characterized by parameterst; and t, for g; and gy:

A-t)yo = A -1t2)Yo,
(1—t)s +1D; = (1—t)s + D/,
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Thefirst equation leadsto t; = t, and one obtains, for ty,

s -5

t, = .
YT D -D+s -5

Since D; — D/ > d; andsinces — s < md’, we get
D; — Df
Dj — Di, +S -5y
= YOL-
di + md’

Ye = Yo

LEMMA 7. Let
b/ — bd(YO - b)
Yo(P2 — p1) —d(yo — b)’
where p; and p, arethe x-valuesof the points P, and P,. Thenall of thebarrier including
the segments of the cones except for the segmentsat y = b + b’ can be seen fromthe two
guardsat P, and P;.

ProOF. Letg € s andlet G1 and G, be the two points where this cone intersects with
the barrier liney = b (see Figure 13). We need to find an expression for y;, which isthe
y-value of the intersection point of the two lines from P; to G; and from P, to G,.

We find an expression for the point G; by calculating the intersection of the lines
froms; to D; and y = b and obtain

G, = ((b/YO)(Sj B Di) + Di>‘

We find an expression for the point G, by calculating the intersection of the lines from
S to Dj +dand y = b and obtain

G, - <(b/yo)(5j =D~ 4D+ d) |

Now, we find the intersection point of the lines from P; to G; and from P, to Ga:

- (1—t2)<%2> i ((b/yoxsq- -0~ d)+D +d> |

Again, t; = t, and we obtain

_ P1— P2
d—bd/yo+ p1— p2’

t

Therefore,

y1 = bty.
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y1 does not depend on D, thereforeweletb’ = y; — b = b(t; — 1):

_ bd(yo — b)
Yo(p2 — p1) —d(yo—b)’

b/

If we substituteb = Sypand p, — pr = —4"'m"td —d +2d Y0 4 m +d” —
(—d”) = —4"'m"1d —d +2d 37 4'm' + 2d” in the equation for b, we obtain

. (35/12%)yo
—4n—1mr-12 30 M Aim 4 27 /d) — B

A simple calculation shows that b’ < yp/12, if m > 2 and n > 2, which must be the
case since there were no intersections otherwise.

Because d = d’/4 and because of Lemma 5, any two cones from the same element
intersect only at pointswith ay-value at most %yo whichislessthanb. Becaused; > md’
for al d; and because of Lemma 6, any two cones from different elementsintersect only
at points with a y-value at least %yo, whichisat mostb + b'.

Spikes of two elements do not intersect

LEMMA 8. The spikes of any two elements do not intersect.

Proor. Lets bethefirst and let s; be the last set that g is a member of. Obviously,
S < si. Theintersection point of thelines g; from s through D, and g, from s; through
D/ isthe point |,. Let the x-value of this point be x. Notethat x; > D;.

These two lines can be expressed with parameter t € R:

) S Dy
o (1_'[)()’0)—“(0)’
. S D
& G U(Yo) +t<0).

The intersection is characterized by parameterst; and t, for g; and gs:

A-t)yo = 1 —-1)Yo,
(1-t)s +t:D; = (1—t)s +t2D).
Thefirst equation leads to t; = t, and with D{ = D, + d one obtains, for t;,
= 9%
T drs -5
Thus, we obtain
d S —5
. +D———
“drs-s  d+s-s
S
d+s —s

Xe =

A
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_d’
D
< Id—d/
—4d
:D—
'd—4d

— 4
- 3D|’

where the second but last step is dueto d = d’/4. Since D, ; = 4m(D; + d) + d and
since we can assume that m > 1, the lemma follows. O

4.3. Transformation of the Solution. Given a solution of the PGH-instance, i.e., the
coordinates of r guards g, . . ., g, proceed as follows to obtain a solution for the SC-
instance:

For each guard g; determine the set h; of elements g of which the guard g; seesthe
corresponding distinguished point €;.

Since no three extended cones from three different elements and three different sets
intersect in the area above y = b + b’ by our construction, there exists a pair of sets
(%, §) for each guard g; such that h; C s U 5. Determine such a pair of sets for each
guard g; and add the sets to the solution of the SC-instance.

4.4. The Reduction is Polynomial. Note that d, d’, yp, h, b are all constants in our
reduction. The values for b’ and for al D; are computable in polynomial time and can
be expressed with O(nlogm) hits.

Therefore, the construction of the polygon can be done in time polynomial in the
size of the input SC-instance, sinceit only produces a polynomial number of points that
can each be computed in polynomial time and each take at most O(nlogm) bitsto be
expressed.

It is obvious that the transformation of the solution runsin polynomial time, since it
only involves determining whether two points see each other and finding pairs of sets
for a polynomial number of guards. (Note that if the number of guards exceeds n, the
solution istrivial.)

4.5. Anlnapproximability Resultfor PGH. Inorderto proveastronginapproximability
result, we need the following:

DerINITION 19.  TheRESTRICTED SET CoVER (RSC) problem consist of all SET COvER
instances that have the property that the number of sets m is less than or equal to the
number of elementsn, i.e, m < n.

LEMMA 9. RESTRICTED SET COVER cannot be approximated by any polynomial time
algorithm with an approximation ratio of (1 — ¢)Inn for any ¢ > 0, unless NP C
TIME(n©leglogm),

PrROOF.  We know that DOMINATING SET cannot be approximated with an approxima-
tion ratio of (1 — &) Inn for any ¢ > 0, unless NP € TIME(n©(99'99m) "where n is
the number of vertices in the graph [4]. Consider the following reduction from Dowm-
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INATING SET to RESTRICTED SET COVER: given agraph G = (V, E) withn := |V|,
which is an instance of DOMINATING SET, we construct a RESTRICTED SET COVER in-
stance by letting the vertices of G be elements and by forming a set for each vertex
that contains the vertex itself as well asits neighbors. The RESTRICTED SET COVER in-
stance thus obtained contains n elements and n sets. This is clearly a gap-preserving
reduction, since each feasible solution of the RESTRICTED SET COVER instance di-
rectly corresponds to a feasible solution (of the same size) of the DOMINATING SET
instance. O

We now consider the reduction to be from RSC to PGH (rather than from SC to PGH).

LEMMA 10. Consider the promise problemof RSC (for any e > 0), whereit ispromised
that the optimumsolution OPT iseither lessthan or equal toc or greater thanc(1—¢) Inn
with ¢, n, and OPT depending on the instance | . This problemis NP-hard unless NP €
TIME(n©(09'29m) (see the notion of quasi-NP-hardness in [2]). Then we have for the
optimum value OPT'’ of the corresponding PGH-instance 1, that OPT’ is either less
than or equal to ¢ + 2 or greater than ((c + 2)/12)(1 — ¢) In|1’]. More formally,

(1) OPT<c = OPT <c+2,
c+2
2 OPT>c(l—¢)lnn = OPT > %(1—£)|n||’|.

ProOF. Theimplicationin (1) istrivial, since, given a solution of the RSC-instance |
of size ¢, we position aguard at each point s; in the corresponding PGH-instance I, if
the set s; isin the solution of |, and we position two additional guards at points P, and
P> in 1/, which see the barrier from bel ow.

We prove the contraposition of (2), i.e.,

c+2

OPT < ——
- 12

@A-¢e)In|l'] = OPT <c(l-2¢)lnn.

Observe that if we are given a solution of 1’ with k guards, we can obtain a solution of
| with at most 2k sets by performing the procedure described in Section 4.3. Therefore,

2
) OPT < 2%(1—8)|n|l/|
(4) < 2%22(1—8)”1]’]3
2
(5) < 2~31—;(1—8)Inn
(6) < c(1—-¢)Inn,

wherewe used | 1’| < n®to get (4), which istrue because the polygon of 1’ consists of n
spikes and less than nm < n? holes (see the definition of RSC). Therefore, the polygon
consists of less than k(n? + n) points, where k is asmall constant. Therefore, |1] < n®
for n large enough. We used 2c > ¢ + 2 to get to (5). O
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Fig. 16. Polygon for VG and EG.

Lemma 10 completes the proof of Theorem 8.

THEOREM 8. PGH cannot be approximated by a polynomial time algorithm with an
approximation ratio of (1 — ¢)/12) Inn for any ¢ > 0, where n is the number of the
polygon vertices, unless NP € TIME(n©(oglogm))

4.6. Inapproximability Results for VGH and EGH. A dlight modification of the poly-
gon asindicated in Figure 16, whereb” = yp + b’, alows usto prove the corresponding
theorems for VGH and EGH.

THEOREM 9. VGH cannot be approximated by a polynomial time algorithm with an
approximationratio of ((1—¢)/12) Innfor any ¢ > 0, wheren isthe number of polygon
vertices, unless NP € TIME(n©(loglogn)

ProOOF. The proof is almost identical to the proof for PGH, except that instead of two
additional guards at P; and P, we have athird additional guard at P; (see Figure 16).
This additional guard means that we need to replace ¢ + 2 by ¢ + 3 in the proof of
Lemma 10. In addition, we get a slightly stronger condition, namely 2c > ¢ + 3, to
obtain the inequality at (5). O

THEOREM 10. EGH cannot be approximated by a polynomial time algorithm with an
approximationratio of ((1—¢)/12) Innfor any ¢ > 0, wheren isthe number of polygon
vertices, unless NP € TIME(n©oglogmy)

ProOOF. The proof is almost identical to the proof for PGH with the additiona infor-
mation from the proof of Theorem 9. Note that in the case of EG all guards are edges.
The proofs carry over effortlessly. O

4.7. Inapproximability Results for PGIH, VGIH, and EGIH

THEOREM 11. PGIH, VGIH, and EGIH cannot be approximated by a polynomial time
algorithmwith an approximation ratio of ((1—¢)/12) Inn for any ¢ > 0, wheren isthe
number of polygon vertices, unless NP € TIME(n©(cglogm)
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Proor. All proofs which lead to Theorems 8-10 carry over. Note that for a lemma
corresponding to Lemma 10, which is the most crucial part in the proof, we can till,
virtually without change, prove (1) and (2). O

5. An Application: Guarding Terrains. We proveinapproximability resultsfor sev-
era terrain guarding problems by proposing reductions from RESTRICTED SET COVER,
all of which are based on the reduction proposed for PGH.

THEOREM 12. PGT cannot be approximated by a polynomial time algorithm with an
approximation ratio of ((1— ¢)/12) Inn for any ¢ > 0, where n isthe number of terrain
vertices, unless NP € TIME(n©oglogn)y

ProOF. We reduce RESTRICTED SET COVER to PGT. In afirst step, we construct the
same polygon with holes as constructed in the corresponding reduction for PGH. We
then triangulate this polygon arbitrarily, and construct a terrain, by letting the interior
of the polygon have height 0 and the exterior (including the holes in the barrier) have
height h’, for a positive constant h'. To make the terrain finite, we cut off the exterior of
the polygon with a generous bounding box that is triangulated as well. The terrain we
obtain has vertical walls, which is for reasons of simplicity only. The terrain can easily
be modified to have steep, but not vertical, walls.

The proof then carrieson just asfor PGH. The setpoints's; are assumed to be at height
h’, as are points P, and P,; the distinguished points g, however, are at height 0. O

THEOREM 13. VGT cannot be approximated by a polynomial time algorithm with an
approximationratio of ((1 —¢)/12) Inn for any ¢ > 0, where n isthe number of terrain
vertices, unless NP € TIME(n©(loglogn)y

ProoF. Adopt the proof of Theorem 12 for PGT with the modifications of the con-
structed polygon asindicated in Theorem 9 for VGH. O

THEOREM 14. FHT cannot be approximated by a polynomial time algorithm with an
approximationratio of (1 —¢)/12) Inn for any ¢ > 0, where n isthe number of terrain
vertices, unless NP € TIME(n©loglogn)y

PrROOF.  Proceed asin the proof for Theorem 12, and let h, the fixed height, where the
guards can be placed, be equal to h’, the height of the exterior of the polygon. O

THEOREM 15. PGTR, VGTR, and FHTR cannot be approximated by a polynomial time
algorithmwith an approximation ratio of ((1—¢)/12) Inn for any ¢ > 0, wheren isthe
number of terrain vertices, unless NP € TIME(n©Uoglogny

PrROOF.  Proceed as in the proofs for Theorems 12—14. However, triangulate the poly-
gon in such a way that each spike is triangulated into a single triangle. Note that the
spikes take over the role of the distinguished points. A solution for RSC with k sets
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can till be easily transformed into a solution of the terrain guarding instance with k
guards. Furthermore, a solution of the terrain guarding instance with k guards can still
be transformed into a solution of the RSC instance with at most 2k sets, because three
different cones from three different elements and three different sets do not intersect in
the area above the barrier, because this is a weaker condition than the corresponding
condition with extended cones. O

6. Approximability Results. Surprisingly few approximation algorithms are known
for art gallery problems and terrain guarding problems.

It is known, however, that VGI, EGI, VGIH, and EGIH are approximable with a
ratio of O(logn), where n is the number of polygon vertices [13]. The corresponding
approximation algorithms divide the interior of the polygonsinto “basic” triangles that
are either completely visible or invisible from any vertex- or edge-guard. The problem
is then transformed into an instance of SET COVER, which can be approximated with
alogarithmic ratio by a greedy algorithm, which consists of recursively adding to the
solution the set that covers amaximum number of elements not yet covered and achieves
an approximation ratio of Inn+ 1 [14]. These a gorithms can be easily modified to work
for VG, EG, VGH, and EGH aswell.

No sophisticated approximation algorithms are known for PG, PGH, PGI, and PGIH,
except for arestricted version of PGI [1]. Infact, it isnot even known if the corresponding
decision problems are in NP. A trivia approximation algorithm for PG, PGH, PGI, and
PGIH simply returnsall n vertices of the polygon as a(feasible) solution. Thisalgorithm
achieves an approximation ratio of n, because there is at least one guard needed in a
feasible solution. Note that this ratio might be improved slightly for PGI by applying
an agorithm that places |n/3] guardsthat together see all of the interior of the polygon
(see [25] for details); this could be done similarly for PGIH with another algorithm (see
[25] for details), but the approximation ratio remains O(n).

For terrain guarding problems, we have the following results.

THEOREM 16. FHTR can be approximated by a polynomial time algorithmwith aratio
of O(logn).

PrROOF. In order to prove the theorem, we construct an SC-instance for agiven FHTR-
instance as follows. Each triangle is an element of the SC-instance. For each triangle
determine the area on the plane z = h from where the triangle is fully visible. Thisarea
is a polygon of descriptional complexity O(n?), that can be computed in time O(n*)
by interpreting the points of the polygon as specia points of an arrangement. At each
point, where two of these polygonsintersect, determine which triangles are visible from
this point and define the set of visible triangles as one set for SC. There are O(n®)
such intersections. Now solve the SC-instance approximately, by applying the greedy
algorithm for SC. The solution obtained is not more than Inn + 1 times larger than the
optimum solution for SC [14].

To see that thisreduction is approximation-ratio preserving, consider that the n poly-
gons partition the plane z = h into cells. Observe that the set of visible triangles is the
same throughout the area of a cell. On the boundary of the cell, however, a few more
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triangles might be visible since the boundary may be part of the visibility area of another
triangle. Therefore, any solution of the FHTR-instance can be transformed to a solution
of the SC-instance by moving guards that are in the interior of a cell to an appropriate
intersection point on the boundary of the cell. O

THEOREM 17. VGTR can be approximated by a polynomial timealgorithmwith aratio
of O(logn).

ProoF. Similarly as in the proof of Theorem 16, we construct an SC-instance for a
given VGTR-instance. Each triangle in the terrain is an element of the SC-instance. We
determine at each vertex in the terrain, which triangles are completely visible from a
guard at the vertex and define the set of visible triangles as one set for SC. We then apply
the greedy algorithm to the SC-instance and obtain a solution which is not more than a
logarithmic factor away from the optimum. O

No sophisticated approximation agorithms are known for PGT, PGTR, VGT, and
FHT. A trivial approximation algorithm for VGT, PGT, and PGTR simply puts a guard
at each vertex of theterrain, thus achieving an approximation ratio of n, since at least one
guard is always needed. A trivial approximation algorithm for FHT with approximation
ratio n places a guard above each vertex of the terrain at height h. Again, the approxi-
mation ratios could be improved by a constant factor, since there exists an algorithm [5]
that always places | 3n/5] (vertex-)guards on aterrain that together see al of theterrain.
For FHT, we could also reduce the approximation ratio to n/2 by determining whether
height h islarge enough such that the whole terrain can be seen from one single guard
at some point at height h. The position of such a guard can be computed in linear time
using linear programming (mentioned in [26] as the problem of computing the lowest
watchtower). An approximation algorithm for FTH could return the position of such a
guard and if no such guard exists, it would proceed asin thetrivial algorithm. However,
the approximation ratios remain O(n) for all four problems.

7. Conclusion. Table 1 givesan overview of the known results for the problems stud-
ied. The entries in the “upper bound” column are the smallest approximation ratios for
the corresponding problems, which are achieved by known polynomial time algorithms.
The entries in the “lower bound” column are the largest approximation ratios known,
which cannot be achieved by polynomia time algorithms. The entries in the “unless’
column show what the existence of polynomia time algorithms with better ratios than
the ones given in the “lower bound” column would imply.

All our logarithmic inapproximablity results can actually also be proved under the
weaker assumptionthat NP #£ P, however, with adlightly smaller factor than 1—¢, since
DOMINATING SET and therefore also RESTRICTED SET COVER cannot be approximated
with an approximation ratio of clnn for somec > 0[3], [4], [22].

Table 1 shows that our inapproximability results are optimum up to constant factors
for VGH, EGH, VGIH, EGIH, VGTR, and FHTR.

Thus, a fair amount of work remains to be done. One important issue is to find
nontrivial approximation algorithms with significantly better approximation ratios than
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Table 1. Summary of results.

Problem Upper bound L ower bound Unless
VG O(logn) [13] 1+ ¢ forsomee > 0 NP =P
EG O(logn) [13] 1+ ¢ forsomee >0 NP =P
PG o(n) 1+ ¢ forsomees > 0 NP =P
VGI O(logn) [13] 1+ ¢forsomee > 0 NP =P
EGI O(logn) [13] 1+ ¢ forsomee > 0 NP =P
PGI o(n) 1+ ¢forsomee >0 NP =P
VGH O(ogn) [13]  iFInnforanye >0 NP < TIME(nCoglogm)
EGH O(logn) [13]  LFInnforanye >0 NP C TIME(nCoglogm)
PGH O(n) Leinnforanye >0 NP < TIME(nOdloglogm)
VGIH O(logn) [13] L innforanye > 0 NP C TIME(n©Ucglogm)
EGIH O(logn) [13] L innforanye > 0 NP C TIME(nCoglogn))
PGIH o(n) Leinnforanye > 0 NP C TIME(nOdloglogm)
VGT Oo(n) Ltinnforanye >0 NP € TIME(nO(oglogm)
PGT o(n) Linnforanye >0 NP  TIME(nOloglogn))
FHT Oo(n) L innforanye > 0 NP C TIME(n®oglogn))
VGTR O(logn) iFInnforanye >0 NP C TIME(n©(loglogm)
PGTR O(n) Leinnforanye > 0 NP C TIME(nO(loglogn))
FHTR O(logn) L innforanye > 0 NP C TIME(n®oglogn)

O(n) for the problems, for which only approximation algorithms with ratio O(n) are
known. Of course, one could also try to improve the corresponding inapproximability
results.

Another problem is either to prove that VG, EG, VGI, and VGI cannot be approx-
imated with some logarithmic ratio or to propose approximation a gorithms for these
problems with constant ratio.

Acknowledgement. Theauthorsthank theanonymousrefereesfor helpful suggestions
based on an earlier version of this paper.

(1

(2
(3
(4

(5]

References

A. Aggarwal, S. Ghosh, and R. Shyamasundar; Computational complexity of restricted polygon de-
compositions; in Computational Morphology (ed. G. Toussaint), pp. 1-11; North-Holland, Amsterdam,
1988.

S. Aroraand C. Lund; Hardness of approximations; in Approximation Algorithmsfor NP-Hard Problems
(ed. D. Hochbaum), pp. 399-446; PWS, Boston, MA, 1996.

S. Aroraand M. Sudan; Improved low-degree testing and its applications; Proc. 29th ACM Symposium
on the Theory of Computing, pp. 485-495, 1997.

G. Ausidlo, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi; A list of
NP optimization problems; in Complexity and Approximation: Combinatorial Optimization Problems
and Their Approximability Properties, pp. 367-470; Springer-Verlag, Berlin, 1999; also availablein an
online version at http://www.nada.kth.se/theory/compendiumm/.

P.Bose, T. Shermer, G. Toussaint, and B. Zhu; Guarding polyhedral terrains; in Computational Geometry
7, pp. 173-185; Elsevier Science, Amsterdam, 1997.



Inapproximability Results for Guarding Polygons and Terrains 113

(€]
(7

(8]
(9
[10]

(11

[12]

[13]
[14]

[19]

[16]

[17]
[18]

[19]
[20]

[21]
[22]
(23]
[24]
[29]

[26]

D. P. Bovet and P. Crescenzi; Introduction to the Theory of Complexity; Prentice-Hall, Englewood Cliffs,
NJ, 1993.

P. Crescenzi and L. Trevisan; On approximation scheme preserving reducibility and its applications,
Proc. 14th Annual Conference on Foundations of Software Technology and Theoretical Computer
Science, pp. 330-341; Lecture Notes in Computer Science, Vol. 880; Springer-Verlag, Berlin, 1994.

J. C. Culberson and R. A. Reckhow; Covering polygonsis hard; Proc. 29th Symposium on Foundations
of Computer Science, pp. 601-605, 1988.

S. Eidenbenz; |napproximability Results for Guarding Polygons without Holes, pp. 427-436; Lecture
Notesin Computer Science, Vol. 1533; Springer-Verlag, Berlin, 1998.

S. Eidenbenz, C. Stamm, and P. Widmayer; Inapproximability of someart gallery problems; Proc. 10th
Canadian Conference on Computational Geometry, pp. 64—65, 1998.

S. Eidenbenz, C. Stamm, and P. Widmayer; Positioning Guards at Fixed Height above a Terrain —
An Optimum Inapproximability Result, pp. 187-198; Lecture Notes in Computer Science, Vol. 1461,
Springer-Verlag, Berlin, 1998.

U. Feige; A threshold of Inn for approximating set cover; Journal of the ACM, Val. 45 No. 4, pp. 634—
652, 1998; apreliminary version appeared in Proc. 28th ACM Symposium on the Theory of Computing,
pp. 314-318, 1996.

S. Ghosh; Approximation algorithmsfor art gallery problems; Proc. Canadian Information Processing
Society Congress, 1987.

D. Johnson; Approximation algorithms for combinatorial problems; Journal of Computer and System
Sciences, Vol. 9, pp. 256-278, 1974.

S. Khanna, R. Motwani, M. Sudan, and U. Vazirani; On syntactic versus computational views of
approximability; Proc. 35th Annual |EEE Symposium on Foundations of Computer Science, pp. 819—
830, 1994.

M. vanKreveld; Digital elevationmodel sand TIN a gorithms; in Algorithmic Foundationsof Geographic
Information Systems (ed. van Kreveld et al.), pp. 37—-78; Lecture Notesin Computer Science, Vol. 1340;
Springer-Verlag, Berlin, 1997.

D. T. Lee and A. K. Lin; Computational complexity of art gallery problems; |EEE Transactions on
Information Theory, Vol. 32, pp. 276-282, 1986.

B. Nilsson; Guarding Art Galleries - Methods for Mobile Guards; Doctoral thesis, Department of
Computer Science, Lund University, 1994.

J. O'Rourke; Art Gallery Theorems and Algorithms; Oxford University Press, New York, 1987.

J. O'Rourke and K. J. Supowit; Some NP-hard polygon decomposition problems; |EEE Transactions
on Information Theory, Vol. 29, No. 2, pp. 181-190, 1983.

C. H. Papadimitriou and M. Yannakakis; Optimization, approximation, and complexity classes; Proc.
20th ACM Symposium on the Theory of Computing, pp. 229-234, 1988.

R. Raz and S. Safra; A sub-constant error-probability low-degree test, and a sub-constant error-
probability PCP characterization of NP; Proc. 29th ACM Symposium on the Theory of Computing,
pp. 475484, 1997.

T. Shermer; Recent resultsin art galleries; Proceedings of the |EEE, Vol. 80, pp. 1384-1399, 1992.

L. Trevisan; Reductions and (Non-)Approximability, Doctoral thesis, 1997.

J. Urrutia; Art gallery and illumination problems; in Handbook on Computational Geometry (ed.
J.-R. Sack and J. Urrutia), pp. 973-1027; North-Holland, Amsterdam, 2000.

B. Zhu; Computing the shortest watchtower of apolyhedral terrainin O(nlogn) time; in Computational
Geometry 8, pp. 181-193; Elsevier Science, Amsterdam, 1997.



